MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.


   G* =  = [          ] ω           .




Todos os fenômenos físicos que ocorrem na natureza podem ser descritos em termos de quatro interações fundamentais. Elas são fundamentais no sentido de que não podem ser reduzidas a interações mais básicas. Cada interação descreve como uma dada característica, como a massa de uma partícula, ou conjunto de partículas, afeta outras partículas com essa mesma característica.

Segundo o modelo padrão, cada uma dessas interações é mediada pela troca de bósons entre as partículas na qual elas atuam. Essas partículas que mediam as interações são virtuais e, por isso, não podem ser observadas diretamente. Isso justifica o porquê de os efeitos dessas interações não serem sentidas instantaneamente, já que a maior velocidade que elas podem se propagar é com a velocidade da luz. Para que uma partícula virtual possa ser emitida sem violar a conservação de energia, a mesma deve ser reabsorvida em um intervalo de tempo tão curto quanto o permitido pelo princípio da incerteza. Porém, esses bósons mediadores podem ser tornar reais caso seja fornecida energia equivalente à energia de repouso deles.[2]

Consequentemente o alcance de uma dada interação está relacionado com a massa do bóson mediador. Assim, quanto maior a massa do bóson mediador, menor será o alcance da interação. Cada interação também apresenta um chamado tempo de interação, de forma que a troca de bósons virtuais é feita dentro desse tempo.

A intensidade de cada interação é definida pela sua constante de acoplamento, um parâmetro adimensional que serve para comparar as diferentes interações. No caso particular da interação eletromagnética, a constante de acoplamento é obtida a partir da expressão da energia potencial eletrostática entre duas cargas puntiformes divida pelor fator ħc.

/


  / G* =  = [          ] ω           .

A constante de acoplamento da interação eletromagnética é também conhecida como a constante de estrutura fina , já substituindo os valores das constantes. Na tabela a seguir são apresentadas  características específicas de cada interação:[2]

InteraçãoBóson mediadorMassa ()FonteAlcance (m)Tempo de interação (s)Constante de acoplamento
ForteGlúon0Carga de cor
EletromagnéticaFóton0Carga elétrica
Fraca81,91Carga fraca
GravitacionalGráviton0Massa


/

  / G* =  = [          ] ω           .



Grupos de simetria[editar | editar código-fonte]

O grupo de cor SU (3) corresponde a uma simetria local cujo processo de transformação em uma teoria de gauge dá origem à QCD. A carga elétrica é um parâmetro do grupo de simetria local U(1) que é transformada em um parâmetro de gauge e dá origem à QED: nesse caso se trata porém de um grupo abeliano, diferentemente do que ocorre na QCD.

Considerando-se uma versão da QCD com Nf sabores de quarks sem massa, então há também uma simetria global (quiral) de sabor do grupo SUL(Nf) × SUR(Nf) × UB(1) × UA(1). A simetria quiral é quebrada espontaneamente pelo vácuo da QCD para o vetor (L+R) SUV(Nf) com a formação de um condensado quiral. A simetria vetorial UB(1) corresponde ao número bariônico dos quarks e é uma simetria exata. A simetria axial UA(1) é exata na teoria clássica, porém é quebrada quando quantizada, devido a ocorrência de uma anomalia. Configurações de campos de glúon chamados instantons estão relacionados intimamente com essa anomalia.

Há então dois tipos diferentes de simetrias SU(3): a que age em diferentes cores de quarks, que é uma simetria de gauge exata mediada por glúons, e há também a simetria entre diferentes sabores de quarks, que transforma sabores de quarks uns nos outros, ou simetria SU(3) flavour. A simetria SU(3) de sabores é uma simetria aproximada do vácuo da QCD, e não é uma simetria fundamental. É uma consequência acidental da pequena massa dos três quarks mais leves (up, down e strange).

No vácuo da QCD há condensados de todos os quarks cujas massas são menores que a escala da QCD. Isso inclui os quarks up e down, e em uma medida menor o quark strange, porém nenhum dos outros mais pesados. O vácuo é simétrico sobre uma transformação SU(2) de isospin entre os quarks up e down, em em grau menor também entre rotações entre os sabores updown e strange, ou grupo completo SU(3) flavour, e as partículas observadas compõe multípletos SU(3).

A simetria de sabor aproximada tem também bósons de gauge associados, partículas observadas como o rho e o o omega, mas essas partículas não são como os glúons pois são massivas.

Lagrangiana[editar | editar código-fonte]

A dinâmica dos quarks e glúons é controlada pela lagrangiana da cromodinâmica quântica. A lagrangiana invariante de gauge da QCD é

 /  G* =  = [          ] ω           .

onde  são os campos dos quarkos, uma função dinâmica do espaço tempo, na representação fundamental dogrupo de gauge SU(3), indexada por  são os campos de glúons, também funções dinâmicas do espaço-tempo, na representação adjunta do grupo de gauge SU(3), indexado por ab,... ; γμ são as matrizes de Dirac conectando a representação spinorial a representação vetorial do grupo de Lorentz.

O símbolo  representa o tensor de força do campo de glúon invariante de gauge, análogo ao tensor de força do campo eletromagnético, F^{\mu \nu} \,, em eletrodinâmica quântica. É dado por:[8]

onde fabc são as constantes de estrutura de SU(3). Note que as regras para mover os índices ab, or c de cima para baixo são triviais (assinatura (+, ..., +)) de forma que fabc = fabc = fabc ao passo que para os índices μ or ν devem ser seguidas as regras não triviais, correspondendo a assinatura métrica (+ − − −), por exemplo.

As constantes m e controlam a massa dos quarks e as constantes de acoplamento da teoria, sujeitas a renormalização da teoria quântica completa.

Uma noção teórica importante envolvendo o termo final da lagrangiana acima é a variável do loop de WilsonEsse loop tem papel importante nas formas discretizadas da QCD (veja QCD na rede), e de forma mais geral, distingue entre estados confinados e livres da teoria de gauge. Foi introduzido pelo físico laureado com Nobel Kenneth G. Wilson.






A eletrodinâmica quântica é uma teoria abeliana de calibre, dotada de um grupo de calibre U(1).

campo de calibre que media a interação entre campos de spin 1/2, é o campo eletromagnético, que se apresenta sob a forma de fótons.

A descrição da interação se dá através da lagrangiana para a interação entre elétrons e pósitrons, que é dada por:

  / G* =  = [          ] ω           .

onde  e sua adjunta de Dirac  são os campos representando partículas eletricamente carregadas, especificamente, os campos do elétron e pósitron representados como espinores de Dirac.

Comentários

Postagens mais visitadas deste blog