MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
G* = = [ ] ω , , .=
Todos os fenômenos físicos que ocorrem na natureza podem ser descritos em termos de quatro interações fundamentais. Elas são fundamentais no sentido de que não podem ser reduzidas a interações mais básicas. Cada interação descreve como uma dada característica, como a massa de uma partícula, ou conjunto de partículas, afeta outras partículas com essa mesma característica.
Segundo o modelo padrão, cada uma dessas interações é mediada pela troca de bósons entre as partículas na qual elas atuam. Essas partículas que mediam as interações são virtuais e, por isso, não podem ser observadas diretamente. Isso justifica o porquê de os efeitos dessas interações não serem sentidas instantaneamente, já que a maior velocidade que elas podem se propagar é com a velocidade da luz. Para que uma partícula virtual possa ser emitida sem violar a conservação de energia, a mesma deve ser reabsorvida em um intervalo de tempo tão curto quanto o permitido pelo princípio da incerteza. Porém, esses bósons mediadores podem ser tornar reais caso seja fornecida energia equivalente à energia de repouso deles.[2]
Consequentemente o alcance de uma dada interação está relacionado com a massa do bóson mediador. Assim, quanto maior a massa do bóson mediador, menor será o alcance da interação. Cada interação também apresenta um chamado tempo de interação, de forma que a troca de bósons virtuais é feita dentro desse tempo.
A intensidade de cada interação é definida pela sua constante de acoplamento, um parâmetro adimensional que serve para comparar as diferentes interações. No caso particular da interação eletromagnética, a constante de acoplamento é obtida a partir da expressão da energia potencial eletrostática entre duas cargas puntiformes divida pelor fator ħc.
/
/ G* = = [ ] ω , , .=
A constante de acoplamento da interação eletromagnética é também conhecida como a constante de estrutura fina , já substituindo os valores das constantes. Na tabela a seguir são apresentadas características específicas de cada interação:[2]
Interação | Bóson mediador | Massa () | Fonte | Alcance (m) | Tempo de interação (s) | Constante de acoplamento |
---|---|---|---|---|---|---|
Forte | Glúon | 0 | Carga de cor | |||
Eletromagnética | Fóton | 0 | Carga elétrica | |||
Fraca | 81,91 | Carga fraca | ||||
Gravitacional | Gráviton | 0 | Massa |
Grupos de simetria[editar | editar código-fonte]
O grupo de cor SU (3) corresponde a uma simetria local cujo processo de transformação em uma teoria de gauge dá origem à QCD. A carga elétrica é um parâmetro do grupo de simetria local U(1) que é transformada em um parâmetro de gauge e dá origem à QED: nesse caso se trata porém de um grupo abeliano, diferentemente do que ocorre na QCD.
Há então dois tipos diferentes de simetrias SU(3): a que age em diferentes cores de quarks, que é uma simetria de gauge exata mediada por glúons, e há também a simetria entre diferentes sabores de quarks, que transforma sabores de quarks uns nos outros, ou simetria SU(3) flavour. A simetria SU(3) de sabores é uma simetria aproximada do vácuo da QCD, e não é uma simetria fundamental. É uma consequência acidental da pequena massa dos três quarks mais leves (up, down e strange).
No vácuo da QCD há condensados de todos os quarks cujas massas são menores que a escala da QCD. Isso inclui os quarks up e down, e em uma medida menor o quark strange, porém nenhum dos outros mais pesados. O vácuo é simétrico sobre uma transformação SU(2) de isospin entre os quarks up e down, em em grau menor também entre rotações entre os sabores up, down e strange, ou grupo completo SU(3) flavour, e as partículas observadas compõe multípletos SU(3).
A simetria de sabor aproximada tem também bósons de gauge associados, partículas observadas como o rho e o o omega, mas essas partículas não são como os glúons pois são massivas.
Lagrangiana[editar | editar código-fonte]
A dinâmica dos quarks e glúons é controlada pela lagrangiana da cromodinâmica quântica. A lagrangiana invariante de gauge da QCD é
/
/ G* = = [ ] ω , , .=onde são os campos dos quarkos, uma função dinâmica do espaço tempo, na representação fundamental dogrupo de gauge SU(3), indexada por ; são os campos de glúons, também funções dinâmicas do espaço-tempo, na representação adjunta do grupo de gauge SU(3), indexado por a, b,... ; γμ são as matrizes de Dirac conectando a representação spinorial a representação vetorial do grupo de Lorentz.
O símbolo representa o tensor de força do campo de glúon invariante de gauge, análogo ao tensor de força do campo eletromagnético, F^{\mu \nu} \,, em eletrodinâmica quântica. É dado por:[8]
onde fabc são as constantes de estrutura de SU(3). Note que as regras para mover os índices a, b, or c de cima para baixo são triviais (assinatura (+, ..., +)) de forma que fabc = fabc = fabc ao passo que para os índices μ or ν devem ser seguidas as regras não triviais, correspondendo a assinatura métrica (+ − − −), por exemplo.
As constantes m e g controlam a massa dos quarks e as constantes de acoplamento da teoria, sujeitas a renormalização da teoria quântica completa.
Uma noção teórica importante envolvendo o termo final da lagrangiana acima é a variável do loop de Wilson. Esse loop tem papel importante nas formas discretizadas da QCD (veja QCD na rede), e de forma mais geral, distingue entre estados confinados e livres da teoria de gauge. Foi introduzido pelo físico laureado com Nobel Kenneth G. Wilson.
A eletrodinâmica quântica é uma teoria abeliana de calibre, dotada de um grupo de calibre U(1).
O campo de calibre que media a interação entre campos de spin 1/2, é o campo eletromagnético, que se apresenta sob a forma de fótons.
A descrição da interação se dá através da lagrangiana para a interação entre elétrons e pósitrons, que é dada por:
onde e sua adjunta de Dirac são os campos representando partículas eletricamente carregadas, especificamente, os campos do elétron e pósitron representados como espinores de Dirac.
Comentários
Postar um comentário