MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
G* = = [ ] ω , , .=
Na física, a mecânica quântica relativista (RQM) é qualquer formulação covariante de Poincaré de mecânica quântica. Esta teoria é aplicável a partículas massivas[1] que se propagam em todas as velocidades até as comparáveis à velocidade da luz c e podem acomodar partículas sem massa.[2][3] A teoria tem aplicação em física de alta energia,[4] física de partículas e física de aceleradores,[5][6] bem como física atômica, química[7] e física da matéria condensada.[8][9]
Operador de velocidade[editar | editar código-fonte]
O operador de velocidade Schrödinger/Pauli pode ser definido para uma partícula maciça usando a definição clássica p = m v, e substituindo os operadores quânticos da maneira usual:[10]
- /
que possui autovalores que possuem qualquer valor. Na RQM, a teoria de Dirac, é:
- /
que deve ter autovalores entre ± c. Mais antecedentes teóricos podem ser visto na transformação de Foldy-Wouthuysen.[11][12][13][14]
A equação de Pauli , também conhecida como Equação Schrödinger-Pauli, é uma formulação da Equação de Schrödinger para um spin-partícula que leva em consideração a interação da rotação de uma partícula com o campo eletromagnético. Essas situações são os casos não-relativísticos da Equação de Dirac, onde as partículas em questão tem uma velocidade muito baixa para que os efeitos da relatividade tenham importância, podendo ser ignorados.
A equação de Pauli foi formulada por Wolfgang Pauli no ano de 1927.
Detalhes[editar | editar código-fonte]
A equação de Pauli é mostrada como:
- /
Onde:
- é a massa da partícula.
- é a carga da partícula.
- é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
- é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são:
- é o vetor de três componentes do potencial magnético.
- é o potencial escalar elétrico.
- são os dois componentes spinor da onda, podem ser representados como .
De forma mais precisa, a equação de Pauli é:
/
- G* = = [ ] ω , , .=
Mostra que o espaço Hamiltoniano (a expressão entre parênteses ao quadrado) é uma matriz operador dois-por-dois, por conta das matrizes de Pauli.
A equação de Lippmann–Schwinger (em homenagem a Bernard Lippmann e Julian Schwinger[1]) é uma das equações mais utilizadas para descrever colisões de partículas – ou, mais precisamente, de espalhamento – na mecânica quântica. Pode ser usado para estudar o espalhamento das moléculas, átomos, nêutrons, fótons ou quaisquer outras partículas e é importante principalmente para o estudo de física óptica, atômica e molecular, física nuclear e física de partículas, mas também para os problemas de espalhamento em geofísica. Ela refere-se a função de onda espalhada com a interação que produz o espalhamento (potencial espalhador) e, por conseguinte, permite o cálculo dos parâmetros experimentais relevantes (amplitude de espalhamento e a sessão de choque).
A equação mais fundamental para descrever qualquer fenômeno quântico, incluindo o espalhamento, é a equação de Schrödinger. Em problemas físicos esta equação diferencial deve ser resolvida com a entrada de um conjunto adicional de condições iniciais e/ou condições de contorno para o sistema físico estudado. A equação de Lippmann-Schwinger é equivalente à equação Schrödinger mais as condições de contorno para problemas típicos de espalhamento. A fim de incorporar as condições de contorno, a equação Lippmann-Schwinger deve ser escrita como uma equação integral.[2] Para problemas de espalhamento, a equação de Lippmann-Schwinger muitas vezes é mais conveniente do que a equação de Schrödinger.
A equação de Lippmann-Schwinger é, de forma geral, (na verdade são duas equações mostrados abaixo, uma para e outra para ):
/
- G* = = [ ] ω , , .=
Nas equações acima, é a função de onda de todo o sistema (os dois sistemas considerados como um todo colidem) em um tempo infinito antes da interação; e , em um tempo infinito após a interação (a "função de onda espalhada"). O potencial de energia descreve a interação entre os dois sistemas em colisão. O Hamiltoniano descreve a situação em que os dois sistemas estão infinitamente distantes e não interagem. As suas autofunções são e seus autovalores são as energias . Finalmente, é uma questão técnica matemática utilizada para o cálculo das integrais necessárias para resolver a equação e não tem nenhum significado físico.
Comentários
Postar um comentário